Kinetin Riboside and Its ProTides Activate the Parkinson’s Disease Associated PTEN-Induced Putative Kinase 1 (PINK1) Independent of Mitochondrial Depolarization

نویسندگان

  • Laura Osgerby
  • Yu-Chiang Lai
  • Peter J Thornton
  • Joseph Amalfitano
  • Cécile S Le Duff
  • Iqra Jabeen
  • Hachemi Kadri
  • Ageo Miccoli
  • James H R Tucker
  • Miratul M K Muqit
  • Youcef Mehellou
چکیده

Since loss of function mutations of PINK1 lead to early onset Parkinson's disease, there has been growing interest in the discovery of small molecules that amplify the kinase activity of PINK1. We herein report the design, synthesis, serum stability, and hydrolysis of four kinetin riboside ProTides. These ProTides, along with kinetin riboside, activated PINK1 in cells independent of mitochondrial depolarization. This highlights the potential of modified nucleosides and their phosphate prodrugs as treatments for neurodegenerative diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons.

Mitochondrial Ca(2+) overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1) function, implicated in Parkinson disease, inhibits the mitochondrial Na(+)/Ca(2+) exchanger (NCLX), leading to impaired mitochondrial Ca(2+) extrusion. NCLX activity was, however, fully rescued by...

متن کامل

A Neo-Substrate that Amplifies Catalytic Activity of Parkinson’s-Disease-Related Kinase PINK1

Mitochondria have long been implicated in the pathogenesis of Parkinson's disease (PD). Mutations in the mitochondrial kinase PINK1 that reduce kinase activity are associated with mitochondrial defects and result in an autosomal-recessive form of early-onset PD. Therapeutic approaches for enhancing the activity of PINK1 have not been considered because no allosteric regulatory sites for PINK1 a...

متن کامل

Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK ...

متن کامل

PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1

Mutations in the PTEN induced putative kinase 1 (PINK1) gene cause an autosomal recessive form of Parkinson disease (PD). So far, no substrates of PINK1 have been reported, and the mechanism by which PINK1 mutations lead to neurodegeneration is unknown. Here we report the identification of TNF receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone also known as heat shock pr...

متن کامل

Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.

Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2017